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Effect of martensitic transformation in Ti–15 at % V
b-phase particles on lamellar boundary decohesion
in c-TiAl
Part II Finite element analysis of crack-bridging phenomenon

M. GRUJICIC, S. G. LAI
Program in Materials Science and Engineering, Department of Mechanical Engineering,
241 Flour Daniel Building, Clemson University, Clemson, SC 29634—0921, USA

The commercial finite element package ABAQUS has been used to analyse the crack
bridging process by Ti-15 at % V b-phase particles dispersed in c-TiAl matrix in the presence
of particle—matrix decohesion. Both the particle—matrix decohesion potential and the b-phase
materials constitutive relations are found to have a major effect on the ductility, fracture
toughness and failure mode of the b—c two-phase material. The interface potential is found to
primarily affect the distribution of the normal interface strength ahead of the advancing
interfacial crack and the mode (gradual versus sudden) of decohesion. The b-phase materials
constitutive relations are found to influence the location of nucleation of the interfacial
cracks and, in turn, the mode of decohesion. A metastable b-phase that can plastically
deform at low stress levels by undergoing a stress-assisted martensitic transformation, but
experience a high rate of strain hardening is found to give rise to the largest levels of ductility
and fracture toughness is the b—c two-phase material.  1998 Kluwer Academic Publishers
1. Introduction
There are a number of examples in the literature that
demonstrate the potential for increasing the toughness
of brittle solids by dispersing a ductile phase, [for
example 1—3]. Two modes of toughening are estab-
lished to be governed by the plasticity of the ductile
phase:

1. Particles intercepted by the matrix crack, when
bonded to the matrix, exhibit extensive plastic stretch-
ing in the crack wake [4] and cause toughness en-
hancement by inhibiting crack opening. When such
a bridging zone exists, residual stresses present in the
material, caused by thermal expansion mismatch, can
also contribute to the toughness by means of its influ-
ence on the initial crack opening force.

2. Plastic deformation of particles in the region
surrounding the crack gives rise to crack tip shielding
[5].

In the case of the first mechanism, higher toughness
levels are generally obtained for a large value of the
product of the work of rupture for the particles and
the particle size [6]. By contrast, crack shielding pro-
cesses tend to become larger for ductile particles
having small size and low yield strength [5].

Over the last two decades extensive experimental
and computational research has demonstrated that
deformation-induced martensitic transformation can
lead to substantial enhancements in tensile ductility
and fracture toughness of high—strength, brittle mater-
0022—2461 ( 1998 Kluwer Academic Publishers
ials. The most significant improvements in materials
tensile ductility and fracture toughness have been
achieved in ZrO

2
and in various ceramics containing

ZrO
2

second phase particles, e.g. Evans and Cannon
[7], and in ultra-high strength secondary hardening
steels, e.g. Olson [8]. In our recent study, Grujicic and
Dang [9], found that the addition to the c-TiAl inter-
metallic of 10 vol% of a metastable Ti—26Al—52V—
5 Fe (wt %) body centred cubic (bcc) b-phase that
undergoes a stress-assisted martensitic transformation
gives rise to a nearly 100% increase in tensile ductility
and in fracture toughness relative to the single phase
c-TiAl processed under identical conditions. A com-
prehensive experimental investigation of the fracture
surface revealed that the observed enhancement in
toughness and tensile ductility can be mainly attibuted
to the crack-bridging effect of the b-phase particles
located along the c—c lamellar boundaries accom-
panied by particle—matrix decohesion.

While the phenomenon of brittle-material toughen-
ing by particles of a ductile phase has been investi-
gated extensively, the effect of metastable dispersed
particles that can undergo a deformation-induced
martensitic transformation has received considerably
less attention. In particular, no report of crack bridg-
ing by transforming particles has been found in the
literature. The effect of dispersed-phase martensitic
transformation on crack shielding has been recently
investigated by Grujicic and Sankavan [10, 11]. In the
present work, crack-bridging by b-phase particles
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undergoing a stress-assisted martensitic transforma-
tion and the accompanying particle—matrix decohe-
sion process have been analysed within a continuum
framework using the cohesion zone model initially
developed by Needleman [12].

The fundamental basis for comprehending the
phenomenon of martensitic transformation-enhanced
toughness resides in the thermodynamics and asso-
ciated kinetics of the deformation-induced trans-
formation. The basic thermodynamics along with
consideration of the pertinent martensitic nucleation
and growth processes, permits descripton of the
stress—strain characteristics of the transforming phase,
which, in turn, allows determination of the crack-tip
displacement and stress fields and, thus, quantification
of the level of transformation enhanced toughness.
Preliminary development of a materials constitutive
model that takes into account the basic thermodyn-
amic and kinetic aspects of stress-induced martensitic
transformation in metastable b-phase particles em-
bedded into a stable non-transforming matrix has
been recently carried out by Grujicic and Sankaran
[10]. The model takes into account the basic statis-
tics of the heterogeneous martensitic nucleation
process in dispersed systems as determined using the
small particle martensitic transformation experiments
of Cech and Turnbull [13]. Under the assumption
of a random distribution of the orientation of the
(pre-existing) nucleation sites, the effect of applied
stress on the site potency and its distribution is evalu-
ated and, in turn, the kinetics of stress-assisted mar-
tensitic transformation determined. The knowledge of
the transformation kinetics is next used to determine
the yield criterion and the flow rule for the evolving
two phase (b phase#martensite) material. The results
obtained by Grujicic and Sankaran [10] are used in
the present work to develop a complete continuum
materials constitutive model for the metastable b-
phase.

Notation used in the present paper is based on the
following conventions: Scalars are written in regular
type (e.g.: f, c, r), vectors using bold face lowercase
roman, (e.g., e, t), second-order tensors as bold face
uppercase (e.g.: T, D), while fourth-order tensors use
capital bold face italics (e.g.: I, J ). Tensor (dyadic)
products are indicated by ‘ ? ’, tensor scalar products
of appropriate order by a raised dot. The norm and
the transpose of a second-order tensor A are denoted
by E A E and AT respectively.

The organization of the paper is as follows: in
Section 2.1., a brief description of the cohesive zone
model used to describe the particle—matrix and
matrix—matrix decohesion processes is given. Devel-
opment of the material constitutive models for the
b- and c-phases is presented in Section 2.2. This is
followed by a description of the finite element analysis
of the particle crack-bridging process, Section 2.3. In
Section 3, the results of the finite element analysis are
presented and discussed. Main conclusions are drawn
is Section 4. Derivation of the material Jacobian and
its implementation in the displacement-based finite
element program ABAQUS [14] are presented in the
appendix.
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2. Computational procedure
2.1. Interface cohesive zone model
The decohesion potential functions for the b-phase
particle—c-TiAl matrix interface and the c—c lamellar
boundary of the type determined in Part I of this
two-part paper [15], are incorporated in the finite
element method to analyse large geometry changes
encountered in the process of particle—matrix and
matrix—matrix decohesion, from initial debonding
until complete separation. The procedure for deriva-
tion of the constitutive relations for the b—c and c—c
interfacial elements and their incorporation into the
commercial displacement-based finite element code
ABAQUS [14] was previously given in the Appendix
in Part I of this two-part paper [15].

The cohesive zone for both the particle—matrix and
matrix—matrix interfaces is assumed to have negligible
thickness, when compared to other characteristic
lengths of the problem, such as the b-phase particle
diameter, the computational domain size, typical
lengths associated with the gradient of fields around
the particle, etc. The mechanical behaviour of the
interface is defined by the traction-displacement rela-
tions that are obtained by differentiating the interface
potential, ', with respect to the normal and tangential
interfacial displacements. Stable equilibrium for the
interface is taken to correspond to a configuration
associated with a minimum in the interface potential
where all tractions vanish. For any other configura-
tion, the value of the potential is taken to depend only
on the interfacial displacement vector, u, Fig. 1. In the
present work only axisymmetric deformation fields
are considered and hence u is defined in terms of its
normal component, u

/
, and one tagential component,

u
5
, as

u
/
"u n (1)

u
5
"u t (2)

where n is the local normal to the interface, and t is the
local tangent vector that lies in the r—z plane of the
globl axisymmetric co-ordinate system.
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The interface constitutive relations are thus fully char-
acterized by choosing a specific form for the decohe-
sion potential. This is a major simplification of the
actual interface behaviour, because, in general, the
interfacial response may also depend on quantities
such as displacement rate, local plastic deformation of
the matrix and/or the particle, etc.

It is generally assumed that purely normal interface
decohesion (tangential displacements, u

5
"u

"
"0) the

magnitude of F
/

increases, reaches a maximum and



Figure 1 Interfacial displacement vector, u, and its normal, u
/
, and

shear, u
5
, components in an axisymmetric deformation field of the

b-phase particle and c-phase matrix: (a) the reference configuration;
(b) the configuration after decohesion.

then gradually falls to zero as complete interface sep-
aration occurs. This behaviour is confirmed by our
atomistic simulation results obtained in Part I of this
two-part paper [15]. The normal traction versus
normal interfacial displacement relation obtained by
differentiating the interface decohesion potential
function shown in Fig. 11a in Part I [15] is plotted
in Fig. 2a. The results shown in Fig. 2a, however, show
that the behaviour of F

/
at non-zero values of u

5
and

u
"

is more complicated and even becomes negative at
small values of u

/
.

The shear behaviour of the particle—matrix inter-
face is generally assumed to be non-periodic with
F
5

monotonically increasing with u
5

until com-
plete shear decohesion. The variation of F

5
with

u
5

based on the interface potential function shown
in Fig. 11b in Part I [15], which is plotted in
Fig. 2b shows, however, that the shear response of
the interface is periodic. These findings are consis-
tent with the results of Bozzolo et al. [16] dealing
with atomistic simulations of the ideal slip and inter-
face sliding. In a parametric study of interfacial shear
behaviour, Xu and Needleman [17] showed that for
the limiting cases of very low or very high ratios of
shear interfacial strength to normal interfacial
strength, the couse of decohesion is fairly insensitive to
whether the periodic or non-periodic shear behaviour
of the interface is used. However, for intermediated
regimes, the debonding process was found to depend
significantly on the description of the interface shear
response.

The pure normal decohesion behaviour of the inter-
face is characterized in terms of its strength, r

.!9
(maximum value of F

/
for u

5
"u

"
"0), and the work

of decohesion, '"'(u
/
PR). r

.!9
is generally taken

to be 1—2% of the matrix Young’s modules (about
two—four times the yield strength), while the work of
decohesion is in the range of 1—10 Jm~2. Our results
presented in Table II of Part I of this two-paper [15]
fall into the range of values given above.

In the present work, the shear response of the inter-
face is treated as periodic and of a friction-type so that
a pure shear interface decohesion mode is not incor-
porated in the model. Rather, the effects of shear
deformation are reflected in a periodic reduction of the
capability of the interface to withstand normal de-
cohesion. In other words, the peak normal strength is
Figure 2 (a) Normal component of the traction per unit area of the
(1 1 0)b/(1 1 1)c interface; (b) [0 0 1]b/[0 11 1]c shear component of the
traction for the same interface as in (a). u

/
—[1 1 0]b/[1 1 1]c normal

interface displacement, u
5
and u

"
are, respectively, [0 0 1]b/[0 11 1]c

and [1 11 0]b/[2 11 11 ]c shear interface displacements. For (a) º
5
: (—)

0 nm, (— —) 0.05 nm, (----) 0.1 nm, (——) 0.15 nm. For (b) º
"
: (——)

0 nm, (— —) 0.1 nm, (---) 0.2 nm.

a periodic function of the shear interfacial displace-
ments.

The magnitude of the effective shear interfacial
strength is generally not known and is therefore usual
expressed as a fraction of the normal strength:
s
.!9

"a
5
r
.!9

, with a
5
(1. The effect of different shear

behaviours of the interface is assessed by varying the
magnitude of the a

5
parameter. The results shown in

Table II, Part I of this two-part paper [15], show that
in some cases s

.!9
can be larger than r

.!9
(a

5
'1).

This finding may not have a significant conse-
quence because, based on the finite element results of
Socrate [18], under high triaxiality fields that are used
in the present work, the shear behaviour of the inter-
face may not play a major role on the course of
decohesion.
4403



2.2. Materials constitutive relations
2.2.1. b-phase dispersion
In order to describe the constitutive law for a material
completely, the appropriate equations must be given
that define: (a) the stress—strain relationship; (b) the
direction of plastic flow; (c) the yield criterion; and (d)
the hardening rule. A preliminary derivation of these
equations was carried out by Grujicic and Sankaran
[10] using a thermodynamics, kinetics and mechanics-
based analysis of transformation-controlled deforma-
tion in the dispersed phase of the two-phase system
under consideration. A complete derivation of the
materials constitutive relations is given below. The
basic assumptions made in the present analysis are as
follows:

1. The material inside the particles is initially com-
posed entirely of the b-phase. A second phase, marten-
site, forms and its amount increases in the course of
plastic deformation.

2. Each material point is assumed to contain the
appropriate fractions of the two phases and the overall
materials constitutive relation is a simple weighted
averaged of the corresponding relations for the con-
stituent phases.

3. Stress-assisted martensitic transformation and
slip are the two plastic deformation modes taking
place simultaneously in the b-phase, while martensite
can undergo only plastic deformation by slip.

4. Both phases are elastically and plastically iso-
tropic. The elastic properties of martensite are as-
sumed to be equal to those of the b-phase.

5. Particles of the b-phase dispersed in the c matrix
do not interact with each other. They contain random-
ly oriented nucleation sites, and martensitic trans-
formation proceeds by stress-assisted activation of
these nucleation sites.

6. Strain and stress partitioning between the b-
phase and the martensite is consistent with the Voigt
upper bound model, which postulates that the strains
in the two phases are equal.

7. The evolution of martensite, as well as evolution
of the stresses, is assumed to be independent of the
imposed strain-rate.

2.2.1.1. The stress—strain relationship. The stress—
strain relationship is defined within a hypoelastic basis
that is appropriate for large strain, rate-independent
problems and the Kirchhoff stress T, is chosen as
a suitable measure of the stress state. The relation-
ship between the stress and the strain in rate form is
given as

+
T"Le (D!DP) (5)

where the Jaumann derivative of the Kirchhoff stress,
+
T, and the fourth-order elasticity tensor, Le, are re-
spectively, given as

+
T"T0 !WT#TW (6)

and

Le
"2G (I!1

3
I ? I)#B (I? I) (7)
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where T0 is the material derivative of the Kirchhoff
stress, W the spin tensor, G the elastic shear modulus,
B the elastic bulk modulus, I the fourth-order identity
tensor, and I the second-order identity tensor. D and
Dp in Equation 5 are the total stretching tensor and
the plastic stretching tensor, respectively.

+
T and Le are defined using a weighted average of the

corresponding quantities of the b-phase and marten-
site, as

+
T"fb

+
Tb#(1!fb)

+
Ta (8)

and

Le"fb Leb#(1!fb) Lea (9)

where b and a subscripts refer, respectively, to the
b-phase and martensite and fb and (1!fb) are the
volume fractions of the b-phase and martensite, re-
spectively. Also, due to the use of the Voigt upper
bound model, D1"D1

b"D1a .

2.2.1.2. The yield criterion. By taking into account
the effect of hydrostatic stress on the kinetics of
martensitic transformation in the dispersed b-phase,
Grujicic and Sankaran [10] defined the yield criterion
for the two-phase material as

3
2
1@2 ET@ E#1

3
fb ktr (T))R (e6 ) (10)

where T@ is the deviatoric Kirchhoff stress, k a (ther-
modynamic stability dependent) hydrostatic stress
sensitivity parameter, tr stands for trace, R the yield
resistance and e6 the equivalent plastic strain. The yield
resistance for the two-phase (b#martensite) material
is defined by a weighted average of the yield resist-
ances of the constitutent phase, Rb and Ra , as

R (e6 )"fb Rb (e6 )#(1!fb) Ra (e6 ) (11)

Due to the simultaneous operation of two deforma-
tion mechanisms, namely martensitic transformation
and slip, the overall yield resistance of the b-phase,
Rb is defined as

Rb (e6 b)"1/
1

R53!/4b (e6 b)
#

1

R4-*1b (e6 b)
(12)

and R53!/4b and R4-*1b are, respectively, the yield resist-
ances for the two deformation mechanisms.

A detailed analysis of the dispersed-phase marten-
sitic transformation controlled deformation carried
out by Grujicic and Sankaran [10], yielded the follow-
ing expression for the transformation yield resistance:

R53!/4b (e6 53!/4)"
!2 b

»
.

[(c2
0
#e2

0
)1@2#c

0
)]

G
2a!/.

ln [1/!»
1
N0

7
ln (1!e1 53!/4/e

1
)]

!*g#)!g%-!w
&H (13)

where b is a b-phase chemical composition dependent
constant, »

.
is the molar volume, c

0
and e

0
are mar-

tensitic transformation normal and shear strains, a



is a nucleus potency distribution shape factor, ! is
the matrix—nucleus specific interfacial energy, q is the
planar atomic density of the close packed crystal
planes, »

1
is the average volume of the martensite

plate formed by activation of a single nucleation site,
N0

7
is the total number of nucleation sites per unit

volume e
1

is the equivalent plastic strain correspond-
ing to the completion of martensitic transformation,
*g#) is the chemical driving force for the transforma-
tion, g%- is the (coherent) elastic strain energy of the
martensite nucleus, and w

&
the frictional work of

nucleus—matrix interfacial motion.
The slip resistance function for the b-phase, R4-*1b ,

and the yield resistance for martensite, Ra , are as-
sumed to be consistent with power law hardening, i.e.

R4-*1b (e6 4-*1b )"Kb (e6 4-*1b #e*b )nb (14)

and

Ra (e6 a)"Ka (e6 a#e*a )nc (15)

where the parameters Kb , e*b , nb , Ka , e*a and na are
determined from the corresponding uniaxial tensile
stress—strain data for the single b-phase and fully mar-
tensitic alloys.

2.2.1.3. The flow rule. The increment in the plastic
strain tensor in the two-phase materials has been
derived as

*e1"3
2
1@2 e6 0 *t N#fb

e
0

f*t

3
I (16)

where N"T @/ET @ E is the deviatoric flow direction
tensor, ¹ @ the deviatoric part of the Kirchhoff stress T,
e60 the equivalent plastic strain rate, and f the rate of
increase of the volume fraction of martensite.

2.2.1.4. The hardening rule. The hardening rule,
which essentially defines the tangent modulus that
governs plastic flow of the two-phase material, is de-
fined as

h (e6 )"
dR (e6 )

de6
(17)

where R(e6 ) is given by Equations 11—15.

2.2.1.5. Integration of the material state. When
a boundary value problem is being analysed using the
finite element method, the knowledge of the material
Jacobian for each Gaussian integration point at each
time step is required to evaluate the elements stiffness
matrix. A procedure for evaluation of the material
Jacobian for the b-phase based on numerical integra-
tion of the material state is described below.

If the Kirchhoff stress tensor at time, t, is T
0
, the

updated stress tensor at a new time step, t#*t, is then
given by

T"T
0
#*T (18)
The increment in stress *T can be defined as the inte-
gral of the Jaumann stress rate tensor and is given by

*T"P
t`*t

t

+
Tdt (19)

Equation 19 can be evaluated using the generalized
trapezoidal rule as

*T"g
+
T*t#(1!g)

+
T
0
*t (0)g)1) (20)

In the present work, g is set to one, which reduces the
trapezoidal rule to the Euler backward difference
method.

By combining Equations 18—20 and 5, the updated
stress tensor can be expressed as

T"T
0
#*t Le (D)!*t Le (D1) (21)

After introducing the total strain increment

*e"D*t (22a)

and the plastic strain increment

*e1"D1*t (22b)

Equation 21 can be now rewritten as

T"T
0
#Le *e!Le *e1 (23)

Because both the stress tensor from the previous
time step, T

0
, and the total strain increment for the

current time step, *e, are known, the first two terms
on the right-hand side of Equation 23 are known. The
third term is obtained by multiplying Equation 16
with Equation 7.

Combining Equations 23, 16 and 7, and taking
advantage of the fact that N is purely deviatoric, so
that N ) I"0, yields

T"T
0
#Le*e!61@2 Ge60 *tN!B fbe0f*tI (24)

The Bfb e
0

fQ*t term represents a change in the hydro-
static stress due to the transformation volume change.
This term is proportional to the equivalent trans-
formation plastic strain increment in the b-phase, k5!3/4

Bfb e
0

fQ*t"Bfbe0*f"Bfbe0
df

de6 53!/4
k53!/4

"

B fb e
0

e
1

k53!/4"bk53!/4 (25)

where the proportionality constant, b, is defined as
b,Bfb e

0
/e

1
, and df/de6 53!/4 is set to 1/e

1
in accord-

ance with the findings of Grujicic and Sankaran [10],
that the equivalent transformation strain is a linear
function of the transformed fraction of dispersed b-
phase particles and that at the completion of marten-
sitic transformation, when f"1, the equivalent plastic
transformation strain e6 "e

1
. The transformation

plastic strain increment, k53!/4, is assumed to be related
to the total equivalent plastic strain increment,
k,e60 *t

k53!/4"
h4-*1b

h4-*1b #h53!/4b

k (26)
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where h4-*1b and h53!/4b are the hardening rates obtained
by differentiating R4-*1b , Equation 13, and R53!/4b , Equ-
tion 14, respectively, in accordanc with Equation 17.
To simplify the computation, the h4-*1b / (h4-*1b #h53!/4b )
term in Equation 26 can be assumed to be constant
within a given time step and equal to its value at the
beginning of the time step. Consequently Equation 24
can be written as

T"T
0
#Le*e!61@2GkN!ckI (27)

where c is a constant within the given time step.
The Kirchhoff stress given by Equation 27 can be

further decomposed into its deviatoric component, T@,
and its hydrostatic component, 1

3
tr (T) I

T"T@#1
3

tr (T) I

"T@0#2G*e@!61@2GkN#1
3
tr (T0) I

#Btr(*e)I!ckI (28)

In accordance with Eqution 10, the yield condition is
given as a linear function of the deviatoric and hydro-
static stresses

3
2
1@2 ET@ E#

fb k

3
tr (T))R (e6 )"R(e6

0
#k) (29)

where R (e6 ) is the plastic flow resistance of the two-
phase material at the current level of the effective
plastic strai, e6 "e6

0
#k.

The stress is next updated using the radial return
procedure introduced by Kreig and Kreig [19], which
is based on the use of an elastic trial deviatoric stress

T@T"T@0#2G*e@ (30)

and an elastic trial hydrostatic stress

1
3

tr (TT) I"1
3
tr (T0) I#Btr (*e) I (31)

Next it is assumed that the updated deviatoric stress
lies on the direction defined by T @T , and the magnitude
of both hydrostatic and deviatoric trial stresses re-
laxed in accordance with Equation 28 as

ET @ E"ET@T E!61@2Gk (32)

1
3

tr (T)"1
3

tr (TT)!ck (33)

until the yield criterion given by the equality in Equa-
tion 29 is satisified. By combining Equations 29, 32
and 33, the equilibrium condition can be expressed as
the following non-linear algebraic equation

R (e6
0
#k)!3

2
1@2 ( ET@T E!61@2Gk)

!fbk[1
3
tr (TT)!ck]"0 (34)

which can be readily solved for the unknown in-
crement in the equivalent plastic strain, k. Further-
more substitution of Equations 30—33 into Equation
28, yields the following expression for the updated
stress

T"(ET @ E) N#[1
3

tr (T)] I

"(ET@0#2G*e E!61@2Gk)N#[1
3

tr (T0)

#B tr (*e)!c k] I (35)
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The updated stess tensor, T, can hence be calculated
by substituting the value for k obtained as the solution
of Eqution 34, into Equation 35. The updated stress
tensor is used in the appendix to determine the
material Jacobian.

2.2.2. c-TiAl matrix
2.2.2.1. The stress—strain relationship. The rate form
of the stress— strain relationship is given by an equa-
tion analogous to Equation 5, except that a subscript
k for the matrix phase should be used. The Jaumann
derivative of the Kirchhoff stress.

+
Tc , and the fourth-

order elasticity tensor for the c-phase, Lec , are given by
equations analogous to Equation 6 and 7, respectively.

2.2.2.2. The flow rule. Because the matrix phase
undergoes a plastic deformation by slip but not by
martensitic transformation, there is no accompanying
volume change and hence the direction of the plastic
flow should be set collinear with the deviatoric flow
tensor Nc"T@c/ET@c E, and thus the plastic strain in-
crement in the c-phase can be defined as

*e1c"D1c *t"3
2
1@2 e60 c *t Nc"3

2
*e6 c Nc (36)

where *e6 c is the equivalent plastic strain in the matrix
phase.

2.2.2.3. The yield condition. Because plastic flow in
the c-phase does not involve any volume change,
a pressure independent yield condition such as the
Von Mises yield criterion can be applied and the yield
stress behaviour given by a parabolic function [20]

Rc"Kc (e6 c#e*c )nc (37)

2.2.2.4. The hardening rule. The rate of change in
yield stress with the equivalent plastic strain can be
defined by differentiating Equation 37 with respect
to e6 c .

2.2.2.5. Integration of the material state. Due to the
absence of pressure sensitivity of the yield stress and
plastic incompressibility, this procedure is trivial and
will not be discussed here.

2.3. Problem description
In the present work, finite element numerical simula-
tions are carried out to analyse the crack-bridging
process by dispersed b-phase particles in the presence
of particle—matrix decohesion. A schematic of this
process is given in Fig. 3a. All the simulations are done
under the assumptions that the particles are precipi-
tated along the c—c lamellar boundaries, that the
cracks propagate along these boundaries and that the
particles are subject to high triaxiality stress fields,
characteristic of crack-tip regions. The numerical
simulations are carried out to understand the effects of



Figure 3 (a) Schematic representation of crack bridging in the pres-
ence of particle—matrix decohesion; (b) the axisymmetric cylinder
containing an inclusion — the half of the inclusion is spheroidal,
while the bottom half is an oblate ellipsoid; the shaded rectangle
corresponds to the two-dimensional axisymmetric finite element
mesh shown in Fig. 4. The spring and the special element composed
of the nodes 1, 2 and 3 used to impose the constant triaxiality
loading are also shown.

materials constitutive relations in the b-phase precipi-
tates and the b—c interface decohesion potential on the
attainment of critical conditions for particle—matrix
decohesion.

Because of the small length scales encountered in
the present problem, some justification for the use of
a continuum model is required. Typically, the b-phase
particles precipitated along the c—c lamellar bound-
aries are about 1—10 lm in diameter [9]. On the other
hand, the critical size of the martensite nucleation sites
that might be found in these particles has been deter-
mined to be about 5.0 nm [21]. Thus the ratio of
particle size to nucleation site size is, at least, of the
order of 100 : 1. Also, transmission electron micro-
scope observations of dislocation structure have
shown [9] that the spacing of dislocations is much
smaller than the particle diameter. It appears, there-
fore, that a continuum model is at least marginally
justifiable.

Another concern regards the use of isotropic plas-
ticity for the computational domain (the circular cy-
linder) that may lie within one c-TiAl lamellar colony.
A full three-dimensional analysis of decohesion, based
on crystal plasticity, would certainly be more reliable.
However, the primary objective of the present paper
is to obtain a general understanding of the effect of
martensitic transformation in the b-phase particles on
crack bridging in the presence of particle—matrix
decohesion under different loading conditions and the
three-dimensional approach appears to be too costly
to follow, because a drastic reduction in the scope of
the parametric study would have to be used in order
to compensate for the lengthy three-dimensional cal-
culations. In addition, Xu and Needleman [17]
showed that, under high triaxiality stress states, as is
the present case, a considerable insight can be gained
in the particle—matrix decohesion process by carrying a
simplified isotropic plasticity analysis in place of the
computationally more extensive crystal plasticity
analysis.

As discussed in Part I of this two-part paper [15],
a two-phase material containing discrete particles can
be idealized as a uniform three-dimensional array of
hexagonal cylinders of matrix material, each contain-
ing a spherical particle. This idealization is based on
the assumption that all the particles are of the same
shape, size and behave identically. Also, as discussed
in Part I [15], the hexagonal cylinders can be replaced
by circular cylinders. One of such circular cylinders
can then be treated as a representative material ele-
ment, Fig. 3b. The axisymmetric geometry of the cir-
cular cylinder requires axisymmetric loading and
a ‘‘far-field’’ stress state that can be fully defined by
specifying the levels of the applied axial and radial
stresses, ¹

z
and ¹

r
. The orientation of the r-axis and

z-axis in Fig. 3b is such that ¹
z
*¹

r
, so that the

far-field triaxiality parameter can be defined as
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To reduce the size of the computational domain, only
one-quarter of the circular cylinder is generally ana-
lysed in the literature, for example [17]. This approxi-
mation promotes the model of particle decohesion
that leaves the particle ‘‘floating’’ in the centre of the
void at the completion of decohesion. This is not
consistent with our experimental observations [9],
which show that b-phase particles remain attached to
the c matrix after decohesion is complete. To prevent
particle floating from occurring, the top half of the
particle (along the positive z-axis) is taken to be
spherical, with radius, r

5
while the bottom hald (along

the negative z-axis) is made to be an oblated ellipsoid
of revolution with an aspect ratio of 0.9 (i.e. r

"
"0.9 r

5
,

where r
"

is the semiaxis of the ellipsoid in the z-direc-
tion). This geometry breaks the symmetry of the stress
field around the particle, inducing slightly higher
stress levels at the bottom of the particle and causes
interface decohesion to occur earlier along the bottom
of the particle. An effective radius for the particle, r

1
,

is then defined so that »
1
"(4/3) r3

1
, where »

1
is the

volume of the particle. The sizes of the computational
cylinder and the particle radius are chosen in such
a way that the volume fraction of the b-phase is
approximately 0.01.

Boundary conditions along the sides of the circular
cylinder must meet the symmetry and periodicity con-
ditions for modelling the infinite series of stacked
circular cylinders. The cylinder is required to remain
circular throughout the deformation history. Nodes
4407



along the outer edge of the cylinder are constrained to
have equal radial displacement; nodes along the top
and the bottom of the cell are required to remain in
planes normal to the z-axis; while nodes along the
z-axis are constrained to have zero radial displace-
ment. The loading conditions are prescribed by
specifying the displacement rate in the axial direction
for the top plane, while the nodes along the botton
plane are constrained to move only in the radial direc-
tion. High triaxiality states are achieved by applying
a negative pressure along the outer radius of the
cylinder.

In order to keep the level of far-field triaxiality
constant during the loading history, the radial stress,
¹

3
, is defined via a distributed load (DLOAD) user-

subroutine of ABAQUS that allows the user to scale
¹

3
with the magnitude of axial stress, ¹

z
. However,

because the axial loading used is displacement con-
trolled, the value of ¹

z
is not known a priori and

must be determined and made available to the
DLOAD subroutine during the simulation runs. This
was accomplished by using a three-node user-element
and a stiff spring through which the axial displace-
ment boundary conditions are applied to the cylinder,
Fig. 3b.

Displacement-controlled loading is preferred to one
in which stress boundary conditions are applied both
in the axial and radial directions, because, for some
combinations of the material and interface properties,
equilibrium solutions may exist only if the far-field
stress level decreases during the decohesion process.
While the solution can be obtained under stress-
controlled boundary conditions using a special solu-
tion algorithm, such as the modified Riks method,
these algorithms are effective only if the response of
the model is reasonably smooth. The latter may not be
the case when the interface strength and decohesion
potentials have low magnitudes.

Four-node isoparametric quadrilateral axisymmet-
ric elements (CAX4) are used for both the b-phase
particle and c matrix, Fig. 4. These elements tend to
lock, under the constraint of incompressible plastic
flow, when the level of shear strain becomes very high
(of order unity). In order to extend the analysis beyond
this stage, alternative element formulations with re-
duced integration must be used. However, such ele-
ments may admit deformation modes that cause no
straining at the integration points. These zero-energy
modes make the element rank-deficient, and cause
a phenomenon known as ‘‘hourglassing’’, in which
zero-energy modes propagate through the mesh, lead-
ing to inaccurate solutions. To prevent hourglassing,
an additional artificial stiffness is added to each ele-
ment. For the boundary value problem under consid-
eration, due to the large values of shear deformation
encountered in the region near the interface, the tend-
ency toward hourglassing is highly pronounced so
that a large hourglass stiffness must be used, which as
shown by Socrate [18] can significantly alter the
solution. For these reasons, full-integration CAX4
elements are used in the present analyses. The b—c
interface and c—c lamellar boundary are modelled
using the interfacial elements whose constitutive
4408
Figure 4 Axisymmetric finite element mesh used in the present
work.

relations are derived using the procedure described in
the appendix of Part I of this two-part paper [15].

In order to carry out the analysis of crack bridging
in the presence of interface decohesion, a number of
parameters can be varied such as those that describe:

f interface behaviour,
f constitutive behaviour of the particle phase,
f constitutive behaviour of the matrix phase,
f loading conditions, and
f cylinder geometry, etc.

An all-inclusive analysis, in which each of these para-
meters are independently varied within a relevant
range, is not carried out in the present work. Rather,
the investigation is divided into two sets of parametric
studies. In the first study the effects of varying inter-
face properties within the range observed in Part I
[15] and loading conditions on crack-bridging phe-
nomenon are considered. In the second study, the
loading conditions and the interface properties are
fixed, and the effect of varying b-phase materials con-
stitutive relations is investigated.

3. Results and discussion
3.1. The effect of b—c interface decohesion

potential
In this set of calculations, the constitutive relations for
the b-phase are fixed and set equal to the ones that
were shown by Grujicic and Sankaran [11] to give rise
to the maximum crack-tip shielding effect in c-TiAl.
The constitutive relations for martensite and c-Tial as
determined by Grujicic and Sankaran [11] are also
used in the present calculations. The values of mater-
ials parameters for the three phases (b, martensite and



TABLE I Values of the constitutive model parameters used in the
analysis of the c-TiAl—b-Ti—Al—V—Fe system

Parameter Value Used in Reference
equation
number

Bb, GPa 58 7 [10]
Gb, GPa 27 7 [10]
Bc, GPa 133 7 [10]
Gc, GPa 62 7 [10]
k 1.2 10 [10]
b 2.73 13 [10]
c
0

0.08 13 [10]
e
0

0.04 13 [10]
a 0.84 13 [10]
! J m~2 0.15 13 [10]
q mol m~2 3.01]10~5 13 [10]
N0

7
2]1017 13 [10]

»
1
, m3 10~14 13 [10]

g%-#w
&
, J mol~1 180 13 [10]

e
1

0.048 13 [10]
Kb, MPa 1385 14 [22]
eb 8.88]10~4 14 [22]
nb 0.145 14 [22]
Ka, MPa 1302 15 [22]
ea 9.04]10~3 15 [22]
na 0.135 15 [22]
Kc, MPa 1310 37 [20]
e*c 2.12]10~2 37 [20]
nc 0.128 37 [20]

c-TiAl) used in the present work are give in Table I.
The c—c lamellar boundary decohesion potential is set
equal to the one determined in Part I of this two-part
paper [15]. The complete form of the b—c interface
decohesion potential derived in Part I [15] is not used
in the present work. Rather, the results obtained in
Part I are used to define the bounding values of the
parameters appearing in the interface potential func-
tion. Specifically, to comply with the axisymmetric
character of the computational model used, the shear
behaviour of the interface is assumed to be indepen-
dent of the direction of shear. In addition, the shear
and normal decohesion behaviours of the b—c inter-
face are assumed to be independent of the orientation
of the interface. The results given in Table II of Part
I [15] justify this assumption relative to the normal
interface behaviour but not relative to the shear be-
haviour. To overcome this limitation, the effect of the
magnitude of the shear interfacial strength within the
range identified in Part I is explored Specifically, three
cases of b—c interfacial decohesion potentials are ana-
lysed. In all cases the work of decohesion and
the normal interfacial strength are set to '(u

/
PR)

"2 J m~2 and r
.!9

"6 GPa, respectively, while the
shear strength is varied as: case I, s

.!9
"0.6 GPa; case

II, s
.!9

"6 GPa; and case III, s
.!9

"40 GPa. All the
calculations are done under the applied triaxiality of
&"2.4, which corresponds to the value predicted gy
the Prandtl slip-line field approach &"(1#p) D/31@2

[18].
The relationship between the axial stress and the

axial displacement of the computational cylinder for
the three cases of b—c interface decohesion potential is
shown in Fig. 5. In all three cases the axial stress
Figure 5 The relationship between the axial stress and the axial
displacement of the top surface of the computational cylinder
shown in Fig. 3(b). The three curves correspond to different values
of the normal and shear strength of the b—c interface as follows:
I r

.!9
"6 GPa, s

.!9
"0.6 GPa; II r

.!9
"6 GPa; s

.!9
"6 GPa;

III r
.!9

"6 GPa, s
.!9

"40 GPa.

initially increases very fast until a peak value is reach-
ed at which c—c lamellar boundary separation takes
place and consequently a stress drop occurs. The
stress drops to about two-thirds—one-half of its peak
value and then begins to recover at a very slow rate.
The second drop in stress is associated with decohe-
sion along the b—c interface and results in fracture of
the specimen.

The variation of normal and shear displacements
along the b—c interface for the three cases of b—c
interface potential is shown in Fig. 6. These displace-
ments are used to determine the variation of the local
normal interface strength (local normal interface
strength is dependent on the local shear displacement)
along the b—c interface and to identify the portion of
the interface that has undergone decohesion (the por-
tion of the interface where the local normal displace-
ment is greater than its value at the normal stress level
equal to the local normal interface strength). The
results of this procedure are shown in Fig. 7. The
section of the interface that has undergone decohesion
is designated as ‘‘debonded’’.

The contour plots of the martensite volume per
cent, f (%), per cent equivalent plastic strain e6 1- (%),
and the radial, ¹

3
, and axial, ¹

z
, stresses for cases

I and II of the b—c interface potential are shown,
respectively, in Figs 8 and 9. The contour plots for
case III are very similar to the corresponding contour
plots for case II and hence are not shown. To improve
the clairty of the contour plots only the innermost
region of the computational domain surrounding
the b—c inferface and the c—c lamellar boundary junc-
tion is displayed in Figs 8 and 9. In addition to
showing contours of the aforementioned quantities,
Figs 8 and 9 also show the mode of the b—c interface
decohesion. For all three cases of b—c interface poten-
tial, decohesion starts in the region where the c—c
4409



Figure 6 Distribution of normal (a) and tangential (b) displace-
ments along the b—c interface before complete decohesion takes
place. The displacements are normalized with respect to the charac-
teristic normal and shear interface separation distances, d

/
and k

5
,

respectively. See Fig. 5 for the explanation of symbols I, II and III.
Theta is the radial angle.

lamellar boundary impinges on the b-phase particle
(the polar angle h+0) and then spreads along the b—c
interface. Initially the spread takes place both in posit-
ive and negative h directions. However, final debon-
ding always takes place along the lower (negative h)
portion of the interface.

The results shown in Figs 5—9 can be summarized as
following:

1. The location of the initial b—c interface crack is
not affected by the magnitude of the shear interface
strength. That is, for all three cases analysed the crack
nucleates in the region where the c—c lamellar bound-
ary touches the b-phase particle, Figs 8 and 9.

2. The final fracture occurs by crack propagation
along the lower half of the b-phase particle for all three
cases studied.
4410
Figure 7 Variation of normal interface strength along the b—c inter-
face before complete decohesion takes place. The portions of the
interface where the normal displacement exceeds the local charac-
teristic normal separation distance, d

/
, is marked as ‘‘debonded’’.

See Fig. 5 for the explanation of symbols I, II and III.

3. The total strain to fracture, Fig. 5, is affected by
the magnitude of the shear interface strength and is
larger by 30—35% for the case when r

.!9
's

.!9
,

case I, than for the other two cases.
4. Fracture toughness, which is proportional to the

area under the stress—displacement curves in Fig. 5, is
also larger by 30—35% in case I relative to the other
two cases.

5. The final fracture is relatively gradual in case
I and quite abrupt in cases II and III, Fig. 5. This
appears to be related to differences in the distribution
of the normal interface strength in front of the inter-
face crack, Fig. 7. In case I, Fig. 7, the normal interface
strength increases with distance from the crack tip and
this ensures a more stable mode of crack propagation.
In sharp contrast, in cases II and III, the normal
interface strength decreases with distance from the
crack tip and this causes unstable crack propagation
and abrupt fracture.

6. The b-phase particle can undergo a significant
amount of plastic deformation before final debonding
and similarities in the martensite volume fraction and
equivalent plastic strain fields indicate that plastic
deformation is dominated by martensitic transforma-
tion, Figs 8 and 9.

7. A smaller shear interface strength, case I, pro-
motes a more uniform distribution of plastic strain in
the b-phase, Fig. 8 relative to cases II and III, Fig. 9.
These differences may also contribute to the mode
(gradual versus abrupt) of fracture.

8. The stresses acting on the lower half of the
b—c interface are consistently higher (e.g. ¹

;
in Fig. 8)

and this appears to be the reason that final
fracture always takes place along this portion of the
interface.



Figure 8 Contour plots for the volume per cent of martensite (a) per
cent equivalent plastic strain (b), radial stress (c), and axial stress (d)
for case I of the b—c interface potential.

3.2. The effect of b-phase thermodynamic
stability

In this set of calculations, the materials constitutive
properties for c-TiAl and martensite, the c—c lamellar
boundary decohesion potential and the applied
triaxiality are all kept equal to their values used in
Section 3.1. The b—c interface decohesion potential is
set equal to case I in Section 3.1, i.e. r

.!9
"6 GPa and

s
.!9

"0.6 GPa. The material constitutive relations for
the b-phase have been varied by setting the magnitude
of the chemical driving force for bPmartensite
martensitic transformation, *g#), to the following
three values: case A: *g#)"0 J mol~1; case B:
*g#)"900 J mol~1 and case C: *g#)"1800 Jmol~1.
The three cases of the b-phase correspond to three
different levels of b-phase thermodynamic stability as
follows: Case A: the b-phase possesses a high level of
stability so that it does not undergo any transforma-
tion to martensite. Case B: this b-phase is, in fact, the
one used in Section 3.1. that can undergo martensitic
transformation during loading. Case C corresponds to
Figure 9 Contour plots for the volume per cent of martensite, (a)
per cent equivalent plastic strain (b), radial stress (c), and axial stress
(d) for case II of the b—c interface potential.

the unstable b-phase that transforms fully to marten-
site before any loading is applied. In addition to these
three cases, case D pertaining to the b-phase with
a low initial yield stress (equal to that of the b-phase in
case B) and a low rate of strain hardening (same as
that of the b-phase in case A) is analysed. Case D is
studied in order to separate the effects of initial yield
stress and rate of strain hardening on crack bridging
and interface decohesion.

The relationship between the axial stress and the
axial displacement for the four cases of the b-phase
materials constitutive relation is shown in Fig. 10. The
distribution of the normal and shear displacement
along the b—c interface and the corresponding vari-
ation of the local normal interface strength are shown
in Figs 11 and 12, respectively. The contour plots for
the per cent equivalent plastic strain, and the radial
and axial stresses for cases A and D are shown in
Figs 13 and 14, respectively. The corresponding con-
tour plots for Case B are shown in Fig. 8 (case I), while
the ones for case C are similar to their counterparts in
case A and are not shown for brevity.
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Figure 10 The relationship between the axial stress and the axial
displacement of the top surface of the computational cylinder
shown in Fig. 3b. The four curves correspond to different materials
constitutive relations for the b-phase. See text for details.

The results shown in Figs 10—14 can be summarized
as follows:

1. Both ductility and fracture toughness are affec-
ted by the constitutive relation for the b-phase par-
ticle, Fig. 10. The case of the metastable b-phase that
can undergo a stress-assisted martensite transforma-
tion, case B, yields the highest level of fracture tough-
ness and a high level of ductility.

2. The location of nucleation of the interface crack
is affected by the b-phase constitutive relations, i.e.
thermodynamic stability. For cases A and C, Fig. 13,
which are characterized by a relatively high yield
stress of the b-phase, the crack nucleates at the lowest
part (hK!p/2) of the b—c interface and continues to
propagate upwards during subsequent loading. Con-
trary, for cases B and D in which the initial yield stress
is relatively small the crack nucleates in the region
where the c—c lamellar boundary touches the b-phase
particle (h+0).

3. In cases A and C in which crack nucleation takes
place at the lower part of the b—c interface, Fig. 13, the
Poisson’s effect in the c matrix opposes interface de-
cohesion. This appears to be the main reason for the
slightly higher ductility levels obtained in these cases,
Fig. 10. Fig. 12 suggests that the decohesion process is
relatively stable in this case due to slightly higher
normal interface strength values ahead of the interface
crack.

4. The metastable b-phase, case B, undergoes
a considerably higher amount of plastic deformation,
Fig. 8, than the stable or unstable b-phases, case A and
C, Fig. 13. This behaviour appears to be caused by the
lower values of the yield stress in case B.

5. For the b-phase characterized by the smallest
magnitudes of yield stress and rate of strain hardening,
case D, the results shown in Fig. 10 suggest the lowest
values of materials ductility and fracture toughness.
4412
Figure 11 Distribution of normal (a) and tangential (b) displace-
ments along the b!c interface before complete decohesion takes
place. The displacements are normalized with respect to the charac-
teristic normal and shear interface separation distance, d

/
and k

5
,

respectively. See text for the explanation of symbols A, B, C and D.

However, the ‘‘failure’’ in Fig. 10 is due to numerical
difficulties encountered during the calculation rather
than due to final interface debonding. These difficul-
ties are the result of a large gradient of the equivalent
plastic strain in the b-phase near the interface crack,
which leads to severe distortions in the corresponding
elements, Fig. 14. A comparison of the ¹

r
and ¹

z
values near the crack tips in Fig. 14 with the normal
interface strength profile, Fig. 12, shows that the con-
dition for further crack growth are not met prior to
‘‘failure’’, which further confirms that final debonding
does not take place. The issue of numerical problems
due to excessive mesh distortion has not been dealt
with in the present work. However, when the mesh size
is refined by doubling the number of elements in the
region surrounding the interface crack it is found that
the ‘‘failure’’ is slightly delayed. However, due to



Figure 12 Variation of normal interface strength along the b—c
interface before complete decohesion takes place. The portions of
the interface where the normal displaement exceeds the local char-
acteristic normal separation distance, d

/
, is marked as ‘‘debonded’’.

See text for the explanation of symbols A, B and C.

a small rate of strain hardening, plastic deformation in
the b-phase remained localized in the neck region
(z+0), which would ultimately lead to rupture of the
b-phase particle. To model the rupture process, a fail-
ure criterion would have to be incorporated into simu-
lations. Because such a criterion is not available for
the b-phase corresponding to case D, and the issue of
excessive distortions of the elements is not dealt with,
particle rupture was not analysed in the present work.
Nevertheless, in case D, true failure is expected to
involve rupture and the b-phase particle. Conse-
quently, higher ductility of the b-phase would give rise
to higher ductility levels in the two-phase b—c mater-
ial. However, due to the low rate of strain hardening of
the b-phase in case D, fracture toughness of the two-
phase material may not be as high as in the case of the
metastable b-phase, case B.

4. Conclusions
Based on the results obtained in the present work the
following two main conclusions can be drawn:

1. For a constant value of the b-phase particle—c-
TiAl matrix work of decohesion and fixed b-phase and
c-TiAl materials constitutive relations, the relative
magnitude of the normal and shear interface strengths
(within the range suggested by our atomistic simula-
tion work) does not affect the place where the initial
b-phase particle—c matrix interface crack forms. How-
ever, the crack growth rate and plastic deformation of
the material surrounding the crack, and consequently
the materials ductility and fracture toughness are sig-
nificantly affected by the relative magnitude of the
two interface strengths. Specifically, when the shear
strength is lower than the normal one the ductility and
toughness achieve the largest values.

2. The thermodynamic-stability controlled consti-
tutive relations for the b-phase affect the place where
the initial crack forms, subsequent crack growth and
evolution of the surrounding material and, in turn, the
levels of materials ductility and toughness. The highest
levels of ductility and toughness are achieved in the
case when the initial yield stress of the b-phase is
relatively small while its rate of strain hardening is
Figure 13 Contour plots of the per cent equivalent plastic strain, (a), radial (b), and axial stress (c), for case A of the b-phase material
constitutive relation.
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Figure 14 Contour plots of the per cent equivalent plastic strain, (a), radial (b), and axial stress (c), for case D of the b-phase material
constitutive relation.
high. This type of materials behaviour is encountered
in the case of a metastable b-phase in which plastic
deformation is initiated at relatively small stress levels
by the activation of a stress-assisted martensitic
transformation. As deformation proceeds, however,
the high level of hardness of the transformation
product (martensite) gives rise to a high rate of strain
hardening.
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Appendix
A.1. Determination of the material Jacobian

for metastable b-phase
The material Jacobian, J is a fourth-order tensor that
represents the rate of change in the increment of the
Kirchhoff stress, *T, with respect to a virtual change
in the increment in strain, *e. Thus

J"
d*T

d*e
(A1)

A detailed derivation of the final form of the Jacobian,
as carried out by Zavaliangos and Anand [23],
showed that the general form of the material Jacobian
4414
can be expressed as
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Constants C
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through C
5

are given by
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where
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Differentiation of Equation 32 yields
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while differentiation of Equation 33 yields

­ tr (T)
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­k

­ tr ETT E
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It is clear by analysis, Equations A3—A16, that the
constants C

1
!C

5
can be determined provided the

derivatives ­k/­ ET@T E and ­k/­ tr (TT) are evaluated.
The two derivatives are evaluated as follows.

If the yield potential, (, is defined using Equation
29 as
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then its derivation yields
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­(
­ tr (T@T)

#

­(
­k

­k

­ tr ( TT)
"

­R

­ k
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#3G

­k

­ tr (TT)

!k C
1

3
!c

­k

­ tr (TT)D"0 (A19)

where

h"
­R

­k
(A20)

After differentiating Equation A17 with respect to
ET@T E, tr (TT) and k, Equations A18 and A19 can be
solved to yield

­k

­ E T@T E
"

(3/2)1@2

h#kc#3G
(A21)

­k

­ tr (TT )
"

k/3

h#kc#3G
(A22)

Finally the material Jacobian coefficients C
1
—C

5
are

evaluated by combining Equations A3—A16, A21
and A22 as

C
1
"2G

ET@ E
ET@T E

(A23)

C
2
"B!

Bkc

h#kc#3G
!

2G

3

ET@ E
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(A24)

C
3
"2G

h#kc

h#kc#3G
!2G

ET@ E
ET@T E

(A25)
C
4
"!

31@2 Gc

h#kc#3G
(A26)

C
5
"!

31@2 GBk

h#kc#3G
(A27)

To facilitate numerical calculations, the fourth-order
tensor given by Equation A2 should be converted into
a (6]6) matrix or into a (4]4) matrix for a plain
stress—strain or an axisymmetric analysis.
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